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Biomechanics of the Cornea

ABSTRACT

The purpose of this article is to provide an applicable and 
easy-to-use mathematical model of the biomechanics of the 
cornea. The new spherical dome model considers not only the 
heterogeneity of the tunica of the eye and distinguishes struc-
turally between cornea, limbus and sclera. It also implements 
the structural anisotropy inside the corneal stroma caused by 
the corneas lamellar structure as well as the asphericity of the 
corneal shape.
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INTRODUCTION

The understanding of the biomechanics of the cornea is most 
important for the understanding of the behavior of the cornea 
during and after corneal and refractive surgery as well as for 
the understanding of ectatic corneal diseases. The complex-
ity of the situation including macroscopic considerations 
as well as ultrastructural informations makes it difficult 
to find an applicable analytical approach for a detailed 
biomechanical discussion of the corneal tissue. Therefore, 
it is constumary to use numerical methods including finite 
element calculations to understand what goes on in this 
unique tissue under particular biomechanical conditions. 
Such approaches are laborious and applicable usually to 
a particular situation only.1 A commonly used analytical 
approximations to explain the biomechanical behavior of the 
cornea is the elastic sphere model after Laplace,2 which is 
shown in Figure 1 and represented by the formula 

σ = p r
2d  (Laplace)

In this formula, σ is the tension (stress) within the 
stroma, p is the intraocular pressure (IOP), r is the corneal 
radius and d is the thickness of the cornea.

The model after Laplace does not consider structural and 
biomechanical heterogeneities of the tunica of the eye, such 
as cornea, limbus and sklera. It also considers neither the 
biomechanical and structural anisotropy inside the tissue, 
such as the lamellar nature of the corneal stroma nor the 
aspherically designed corneal shape which is characterized 
by the gradually increasing corneal radius when tracing 
from the central to the peripheral cornea.

Here I shall propose a spherical dome model as a new 
analytical approach which considers (i) the biomechani-
cal distinction between cornea, limbus and sklera, (ii) the 
structural anisotropy and lamellar nature of the corneal 
stroma, and (iii) the asphericity of the corneal shape in order 
to overcome the three major limitation of the elastic sphere 
model after Laplace.

Ultrastructure and Biomechanical Framework 
of the Cornea

The cornea is a unique tissue with unique properties, such 
as transparency, optical and refractive function, biomechani-
cal function and immunological privilege. Most of these 
properties are the result of its ultrastructural organisation. 
Ultrastructural informations about the corneal tissue can 
be obtained by means of two complementary methods: 
first, microscopic investigations and in particular electron-
microscopic investigations and second beam scattering 
techniques and in particular small-angle X-ray scattering 
experiments.3 Local information about the geometrical 
appearance of individual ultrastructural elements, such as, 
e.g. collagen fibrils and their relation to the local surroun-
ding environment, such as, e.g. neighboring fibrils are best 
investigated by transmission electron microscopy (TEM).4 
The collective information about the structural elements 
in question over a specific volume of the tissue, such as 
structural arrangement of the collagen fibrils including 
their average dimensions and distances within the tissue 
are complementary to microscopy.5 The combination of 
both the complementary approaches allow insights into the 
structure and function of the cornea and helps to explain 
the transparency6 as well as the biomechanical properties7,8 
of the tissue. 
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About two-third of the collagen lammellae in a normal 
cornea are arranged orthogonally in a vertical-horizontal 
direction and one-third is randomly oriented.5 This arrange-
ment changes when approaching the corneal periphery at the 
limbus to a continous, circular arrangement of the collagen 
fibrils.8,9 The regular, orthogonal collagen arrangement of the 
collagen fibrils in the normal cornea is destroyed in kerato- 
conus.7 This broken symmetry in the corneal meshwork 
is responsible for the reduced ability to biomechanically 
withstand the acting forces on the tissue. The heterogeneity 
of the collagen fibril organization at different parts of the 
wall of the eye, such as cornea, limbus and sklera is related 
to significant differences in the biomechanical properties 
among these different localizations. In particular, the change 
of the collagen fibril arrangement from the cornea to the 
limbus is responsible for the very high Young’s modulus of 
13 MPa at the limbus in comparison to only 0.3 MPa in the 
cornea and about 2 MPa in the sclera.9-11 This information 
has dramatic consequences and limits the applicability of the 
mathematical model according to Laplace for the analysis 
of the biomechanical behavior of the cornea dramatically. 

The Spherical Dome Model

The amount of extensibility of a given tissue is related to 
the Young’s modulus. Since, Young’s modulus of the limbus 
is very much higher than the ones in cornea and sclera, the 
extensibility of the limbus as reaction to a given load can 
be considered as zero. The extensibility of the cornea Dh/h 
in relation to the extensibility of the sclera Dl/l, behaves 
inversely to the related Young’s moduli according to:

∆
∆
h
l

Es
Ec

= β

where Es is the Young’s modulus of the sclera and Ec is 
the Young’s modulus of the cornea and

β = h
l

According to the variation in the ultrastructural organi-
zation among different locations in the tunica of the eye as 
described above and the related differences in biomechanical 
properaties, such as Young’s modulus between the central 
cornea and the limbus, the limbus can be considered as 
a border to which the cornea is fixed. In this model, the 
cornea is approximated by a dome (calotte of a sphere) with 
a radius of curvature r (representing the corneal radius) and 
a height h (representing roughly the anterior chamber depth) 
according to Figure 2.

In a first approach, I consider the resulting force vector 
on the cornea created by the load (IOP) which is directed 
virtually along the visual axis according to

F1 = pp
D
4

2

 (D is the diameter of the cornea) 

F1, which pushes the cornea outward, have to be 
compensated by a force F2 which attracts the cornea to the 
eye and protects the cornea from disruption. F2 represents 
the force according to the stress inside the tissue integrated 
over the cross-sectional area of the cornea according to

F2 = πDdσ
In fact, the effective cross-sectional area according to F2 

which compensates F1 is the cross-sectional area multiplied 
by sin (a/2), where a represents the opening angle of the 
total cornea when approximating the cornea (dome) as a 
part of a sphere with 

sin α
2
= D
2r

Fig. 1: Elastic sphere model after Laplace. The eye is approximated 
by a homogeneous, elastic sphere. The solid line represents the 
cornea and the dashed line indicates the elasticity of the tissue 
by marking the potential extended position of the cornea resulting 
from the load IOP

Fig. 2: Spherical dome model after Daxer. The limbus is 
represented as a nonelastic area to which the elastic cornea is 
fixed. The solid lines represent the cornea and the dashed lines 
indicate the potential extensibility of the tissue resulting from the 
load. There is no potential extensibility of the tissue at the limbus
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Therefore, 

s = pD
4d

p r
2d

1
2

/ sin α











 =

which is exactly the formula of the elastic sphere model 
after Laplace.2

The reason, why the approach of the spherical dome 
model after Daxer converges exactly to the elastic sphere 
model after Laplace is the fact, that no anisotropy within 
the tissue is considered. The force Vector F1 does not act 
on an isotropic corneal tisse but on a tissue which has to be 
described better by a direction dependent Young’s modu-
lus of the tissue (stress tensors) according to the corneal 
ultrastructure.5 This anisotropic Young’s modulus of the 
cornea is of course much higher in the lamellar direction 
(longitudinal strength) than in the transcorneal direction 
(cohesive strength). The force component of F1 in the 
lamellar direction is, therefore, much more ‘effectively’ 
compensated compared to the transcorneal direction. To 
implement the lamellar nature into the model, we have to 
make the following assumptions:

The direction of the force vector F1 deviates from the 
related projection of the cross-sectional area according to 
F2 in its effect on the intracorneal stress. In other words, 
the direction of the effectiveness of the load inside the tis-
sue deflects somewhat from the direction of the load itself, 
according to the anisotropic lamellar nature of the corneal 
stroma. I approximate this fact by modifying the ‘amount’ of 
the corneal cross-sectional area contributing to the compen-
sation of the load (F1) by replacing sin (a/2) by a anisotropy 
factor f which ranges between zero and 1 according to

s = 
pD
4d
1
f  (Daxer 1)

The easiest way to implement this anisotropy in the 
model is to remove the projection dependence of the cross-
sectional area by removing sin (a/2) from the formula above 
and to privilege the lamellar direction over the transcorneal 
one, which results in

s = 
pD
4d  (Daxer 2)

Here, the dependence on the radius (Laplace) changes 
to a dependence on the corneal diameter (Daxer 2). To 

Figs 3A to D: Intracorneal stress s as a function of the corneal thickness for different central corneal radii according to the spherical 
dome model under different conditions: (A) Daxer 3 using reff = r, (B) Daxer 4 using reff = r, (C) Daxer 3 using reff = (r + D)/2 and (D) 
Daxer 4 using reff = (r + D)/2. IOP was set to 20 mm Hg and corneal diameter D to 12 mm

A

C D

B
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increase (maximize) this anisotropy effect one can even 
replace sin(a/2) by cos(a/2), which seems an appropriate 
approximation especially if one considers the cornea as 
beeing just the ‘top’ of the spherical globe where cos(a/2) is 
close to 1 according to the lamellar direction of the collagen 
fibrils being virtually orthogonal to F1 there. The resulting 
formula is:

s = 

pD
4d
D
4r

2

21−
 (Daxer 3)

Where 

cos ( )α
2

1= − D /4r2 2

To implement the asphericity of the corneal shape in 
the model I equilibrate the corneal radii over the corneal 
surface by changing r into an effective corneal radius reff 
. The effective corneal radius reff is somewhat between 
the central and the peripheral radius. Since, the peripheral 
corneal radius is not always clinically available a good 
approximation should be a value close to the diameter or 

axial length of the eye, which is also in the range of the 
corneal diameter D. The use of the corneal diameter D for 
this approximation has the advantage, that it already exists 
in the formulas and the introduction of a further variable 
is not required in order to keep the equations as simple as 

possible. A good approximation is, therefore, r = D r
2eff
+

instead of r in the formulas above and below.
In a second approach, the load-related force F1 acting 

at every point orthogonally to the inner corneal surface is 
compensated by the force F2 which results from the stress 
inside the cornea and the cross-sectional area without 
projection.

When considering the entire inner corneal surface area 
one gets the force F1 resulting from the IOP acting on the 
cornea according to

F1 = 2 1 12πpr D
4r

2

2− −












and 
F2 = πDdσ

Figs 4A to D: Intracorneal stress as a function of the central corneal radius for different corneal thicknesses according to the spherical 
dome model under different conditions: (A) Daxer 3 using reff = r, (B) Daxer 4 using reff = r, (C) Daxer 3 using reff = (r + D)/2 and 
(D) Daxer 4 using reff = (r + D)/2. IOP was set to 20 mm Hg and corneal diameter D to 12 mm

A

C D

B
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Which results in 

s = 2 1 1p r
Dd

D
4r

2 2

2− −












 (Daxer 4)

when F1 = F2.
Here, the implementation of an effective corneal radius 

according to the explanations above can also be helpful 
for the consideration of the an aspheric corneal shape by 
replacing r by reff .

RESULTS

Figures 3A to D show the dependence of intracorneal stress 
s as a function of the corneal thickness ct = d for different 
corneal radii for the model variant Daxer 3 and 4. 

Figures 3A to D show, that the stress increases with 
decreasing corneal thickness. This effect depends quanti-
tatively very little on the value of the pre-existing corneal 
curvature.

Figures 4A to D show the dependence of the intracorneal 
stress on the corneal curvature for different values of cor-
neal thickness. It shows that the stress decreases slightly if 
the radius of the curvature increases. This effect is more 
prominent for smaller corneal thicknesses.

DISCUSSION

Figures 3 and 4 show the dependence of the intracorneal 
stress of the spherical dome model after Daxer 3 and 4 on 
both, corneal curvature and corneal thickness. In contrast to 
the elastic sphere model after Laplace, which considers the 
eye as a homogenous elastic sphere without distinguishing 
between cornea, limbus and sclera (Fig. 1), the spherical 
dome model after Daxer implements, the biomechanical 
and ultrastructural heterogeneity of the tunica of the eye 
(i.e. distinguishing between corneal, limbus and sclera) as 
well as the anisotropy of the corneal ultrastructure (i.e. the 
lamellar nature of the cornea). By introducing the effective 
corneal radius reff into the models, it should also be possible 
to consider at least partially the asphericty of the cornea in 
the calculations.

Applying the spherical dome model after Daxer as well 
as the elastic sphere model after Laplace for comparison to 
a case of SMILE, PRK and LASIK treatment of preopera-
tively –7.75 diopters and 550 microns corneal thickness as 

calculated by a very nice mathematical model after Rein-
stein, Archer and Randleman,12 one gets the data shown in 
Table 1. It was assumed that the LASIK flap thickness was 
110 microns without contributing to the corneal strength, the 
preoperative K-reading of 44 diopters and a tissue ablation 
of 100 microns for the –7.75 D correction.13

Reinstein et al consider in their model a depth dependent 
variation of cohesive strength and approximate the cohesive 
strength acting orthogonal to the lamellae beeing equal to 
the longitudinal tensile strength in the lamellar (fibrillar) 
direction. The model of Laplace as well as the spherical dome 
model after Daxer consider the mechanical properties as not 
being depth dependent and get, therefore, the same results 
for SMILE and PRK. In none of the models the LASIK flap 
contributes to the strength of the tissue. The elastic sphere 
model after Laplace as well as the spherical dome model 
after Daxer (except Daxer 2) consider a dependence of the 
intra-corneal stress from the corneal curvature. The model 
of Reinstein el al do not consider a dependence from the 
corneal curvature. It is interesting to note from Table 1, that 
Daxer 3 obviously underestimates the effect of corneal thin-
ning on the corneal strength significantly when neglecting 
the asphericity of the cornea (reff = r). By considering the 
asphericity in Daxer 3 [(reff = (r + D)/2)], the effect of corneal 
thinning on the corneal strength is predicted much more 
realistic. It seems, from Table 1, that the elastic sphere model 
after Laplace as well as the model after Reinstein et al may 
partially overestimate the effect of corneal thinning on the 
corneal strength relative to the spherical dome model after 
Daxer. One reason may be, that the spherical dome model 
after Daxer generally considers the anisotropy of the corneal 
tissue by the assumption that the Young’s modulus and the 
strength in the lamellar direction (i.e. the direction along the 
collagen fibrils in the corneal stroma) is much higher than 
in the transcorneal direction (i.e. cohessive strength). This 
assumption is in agreement with the corneal ultrastructure.5 
The consequence is that the load (IOP) on the cornea is 
taken up by the lamellar oriented structures to a much higher 
extend compared to an isotropic consideration, which means 
that the model after Daxer predicts a ‘stronger’ cornea with 
less effect of corneal thinning on the postoperative corneal 
strength.

Table 1: Comparison of the relative postoperative weakness in percentage of the preoperative corneal strength for three different 
treatment modalities (SMILE, PRK, LASIK) for different corneal models

Laplace Reinstein, Archer 
and Randleman12

Daxer 3
reff = r

Daxer 3
reff = (r + D)/2

Daxer 4
reff = r

Daxer 4
reff = (r + D)/2

SMILE 68% 75% 99% 85% 89% 83%
PRK 68% 68% 99% 85% 89% 83%
LASIK 51% 54% 76% 64% 67% 63%
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