In Vitro Histological Analysis of the Human Cornea Undergoing Conventional and Accelerated Cross-linking Protocol: From the Microscope to Clinical Application
Cosimo Mazzotta, Stefano Baiocchi, Maria M De Santi, Mohamed Hosny, Mohamed S Shaheen, Adel Barbara
Citation Information :
Mazzotta C, Baiocchi S, De Santi MM, Hosny M, Shaheen MS, Barbara A. In Vitro Histological Analysis of the Human Cornea Undergoing Conventional and Accelerated Cross-linking Protocol: From the Microscope to Clinical Application. Int J Kerat Ect Cor Dis 2024; 11 (1):1-8.
Purpose:In vitro assessment of the photo-oxidative effects induced by conventional cross-linking (CXL) and accelerated cross-linking (ACXL) at 5.4 J/cm2 energy dose (fluence).
Methods: A total of 20 eye-bank human corneas were treated with different epithelium-off (EPI-OFF) CXL UV-A protocols: five EPI-OFF at 3 mW/5.4 J/cm2 for 30 minutes (Dresden protocol), five at 15 mW/5.4 J/cm2 for 12 minutes pulsed light (Siena ACXL protocol), and five at 30 mW/5.4 J/cm2 pulsed light for 6 minutes. Five corneas were used as control group. Semi-thin and ultrathin sections were examined by a Philips transmission electron microscope at the Department of Human Pathology of Siena University. Histology overview included Bowman's lamina thickness measurement, CXL depth, collagen fibers density, and CXL-induced photo-oxidative damage.
Results: The study provides descriptive histological evidences of in vitro corneal changes induced by ACXL, identifying the differences between treatment depths based on different UV-A power settings and exposure times. The higher UV-A power with the shorter exposure time induced a lower photo-oxidative CXL penetration, while the longer exposure time increased CXL treatment photo-oxidative depth. Increased fiber density induced by higher UV-A power was observed only in the anterior 50 µm of corneal stroma in all cases.
Conclusion: Cross-linking photo-oxidative damage is fluence-dependent. Keeping a constant fluence, the longer exposure time increased the treatment depth due to more oxygen diffusion, while the higher UV-A power with shorter exposure time without increasing the fluence resulted in reduced treatment depth due to less oxygen diffusion. The higher reduction of collagen fibrils distance in the anterior 50 µm stroma appears to be independent from UV-A power and exposure time.
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003;135(5):620−627. DOI: 10.1016/s0002-9394(02) 02220-1.
Hafezi F, Kling S, Hafezi NL, et al. Corneal cross-linking. Prog Retin Eye Res 2025;104:101322. DOI: 10.1016/j.preteyeres.2024.101322.
Hafezi F, Kanellopoulos J, Wiltfang R, et al. Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg 2007;33(12):2035−2040. DOI: 10.1016/j.jcrs.2007.07.028.
Richoz O, Mavrakanas N, Pajic B, et al. Corneal collagen cross-linking for ectasia after LASIK and photorefractive keratectomy: Long-term results. Ophthalmology 2013;120(7):1354−1359. DOI: 10.1016/j.ophtha.2012.12.027.
Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res 2004;29(1):35−40. DOI: 10.1080/02713680490513182.
Kamaev P, Friedman MD, Sherr E, et al. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 2012;53(4):2360−2367. DOI: 10.1167/iovs.11-9385.
Spoerl E, Huhle M, Seiler T. Induction of cross links in corneal tissue. Exp Eye Res 1998;66:97−103. DOI: 10.1006/exer.1997.0410.
Spoerl E, Seiler T. Techniques for stiffening the cornea. J Refract Surg 1999;15(6):711−713. DOI: 10.3928/1081-597X-19991101-21.
Raiskup F, Herber R, Lenk J, et al. Corneal crosslinking with riboflavin and UVA light in progressive keratoconus: Fifteen-year results. Am J Ophthalmol 2023;250:95−102. DOI: 10.1016/j.ajo.2023.01.022.
Vinciguerra R, Bordignon N, Ferraro V, et al. Corneal collagen cross-linking for progressive keratoconus in pediatric patients: Up to 14 years of follow-up. Am J Ophthalmol 2023;255:170−177. DOI: 10.1016/j.ajo.2023.07.017.
Caporossi A, Mazzotta C, Baiocchi S, et al. Age-related long-term functional results after riboflavin UV A corneal cross-linking. J Ophthalmol 2011;2011:608041. DOI: 10.1155/2011/608041.
Caporossi A, Mazzotta C, Baiocchi S, et al. Riboflavin-UVA-induced corneal collagen cross-linking in pediatric patients. Cornea 2012;31(3):227−231. DOI: 10.1097/ico.0b013e31822159f6.
Mazzotta C, Traversi C, Baiocchi S, et al. Corneal collagen cross-linking with riboflavin and ultraviolet A light for pediatric keratoconus: Ten-year results. Cornea 2018;37(5):560−566. DOI: 10.1097/ICO.0000000000001505.
Spoerl E, Mrochen M, Sliney D, et al. Safety of UVA-riboflavin cross-linking of the cornea. Cornea 2007;26(4):385−389. DOI: 10.1097/ICO.0b013e3180334f78.
Brindley GS. The Bunsen−Roscoe law for the human eye at very short durations. J Physiol 1952;118(1):135−139. DOI: 10.1113/jphysiol.1952.sp004779.
Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci 2011;52(12):9048−9052. DOI: 10.1167/iovs.11-7818.
Wernli J, Schumacher S, Spoerl E. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci 2013;54(2):1176−1180. DOI: 10.1167/iovs.12-11409.
Celik HU, Alagöz N, Yildirim Y, et al. Accelerated corneal crosslinking concurrent with laser in situ keratomileusis. J Cataract Refract Surg 2012;38(8):1424−1431. DOI: 10.1016/j.jcrs.2012.03.034.
Mazzotta C, Paradiso AL, Baiocchi S, et al. Qualitative investigation of corneal changes after accelerated corneal collagen cross-linking (A-CXL) by in vivo confocal microscopy and corneal OCT. J Clin Exp Ophthalmol 2013;4:313. DOI: 10.4172/2155-9570.1000313.
Mencucci R, Marini M, Paladini I, et al. Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Exp Ophthalmol 2010;38(1):49−56. DOI: 10.1111/j.1442-9071.2010.02207.x.
Mazzotta C, Balestrazzi A, Traversi C, et al. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: Ultrastructural analysis by Heidelberg retinal tomograph II in vivo confocal microscopy in humans. Cornea 2007;26(4):390−397. DOI: 10.1097/ICO.0b013e318030df5a.
Mazzotta C, Traversi C, Caragiuli S, et al. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond) 2014;28(10):1179−1183. DOI: 10.1038/eye.2014.163.
Mazzotta C, Traversi C, Baiocchi S, et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: Early and late modifications. Am J Ophthalmol 2008;146(4):527−533. DOI: 10.1016/j.ajo.2008.05.042.
Krueger RR, Herekar S, Spoerl E. First proposed efficacy study of high versus standard irradiance and fractionated riboflavin/ultraviolet A cross-linking with equivalent energy exposure. Eye Contact Lens 2014;40(6):353−357. DOI: 10.1097/ICL.0000000000000095.
Mazzotta C, Baiocchi S, Bagaglia SA, et al. Accelerated 15 mW pulsed-light crosslinking to treat progressive keratoconus: Two-year clinical results. J Cataract Refract Surg 2017;43(8):1081−1088. DOI: 10.1016/j.jcrs.2017.05.030.
Hashemi H, Mohebbi M, Asgari S. Standard and accelerated corneal cross-linking long-term results: A randomized clinical trial. Eur J Ophthalmol 2020;30(4):650−657. DOI: 10.1177/1120672119839927.
Kobashi H, Tsubota K. Accelerated versus standard corneal cross-linking for progressive keratoconus: A meta-analysis of randomized controlled trials. Cornea 2020;39(2):172−180. DOI: 10.1097/ICO.0000000000002092.
Mazzotta C, Raiskup F, Hafezi F, et al. Long term results of accelerated 9 mW corneal crosslinking for early progressive keratoconus: The Siena Eye-Cross Study 2. Eye Vis (Lond) 2021;8(1):16. DOI: 10.1186/s40662-021-00240-8.
Friedrich J, Sandner A, Nasseri A, et al. Accelerated corneal cross-linking (18 mW/cm2 for 5 min) with HPMC-riboflavin in progressive keratoconus − 5 years follow-up. Graefes Arch Clin Exp Ophthalmol 2024;262(3):871−877. DOI: 10.1007/s00417-023-06225-8.
Mazzotta C, Romani A, Burroni A. Pachymetry-based accelerated cross-linking: The “M Nomogram” for standardized treatment of all-thickness progressive ectatic corneas. Int J Keratoconus Ectatic Corneal Dis 2019;7(2):137−144. DOI: 10.5005/jp-journals-10025-1171.
Raiskup F, Herber R, Lenk J, et al. Crosslinking with UV-A and riboflavin in progressive keratoconus: From laboratory to clinical practice − Developments over 25 years. Prog Retin Eye Res 2024;102:101276. DOI: 10.1016/j.preteyeres.2024.101276.
Mazzotta C, Hafezi F, Kymionis G, et al. In vivo confocal microscopy after corneal collagen crosslinking. Ocul Surf 2015;13(4):298−314. DOI: 10.1016/j.jtos.2015.04.007.
Touboul D, Efron N, Smadja D, et al. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg 2012;28(11):769−776. DOI: 10.3928/1081597X-20121016-01.
Mazzotta C, Stojanovic A, Romano V, et al. Ray-tracing transepithelial excimer laser central corneal remodeling plus pachymetry-guided accelerated corneal crosslinking for keratoconus. Cornea 2024;43(3):285−294. DOI: 10.1097/ICO.0000000000003380.
Hammer A, Richoz O, Mosquera AS, et al. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci 2014;55(5):2881−2884. DOI: 10.1167/iovs.13-13748.
Mazzotta C, Pulvirenti MA, Zagari M, et al. Crosslinking for progressive keratoconus: Is there room for improvement? Exp Rev Ophthalmol 2023;18(1):121−133 DOI: 10.1080/17469899.2023.2207010.