International Journal of Keratoconus and Ectatic Corneal Diseases

Register      Login

VOLUME 11 , ISSUE 1 ( January-June, 2024 ) > List of Articles

Original Article

Corneal ECC Biomechanics Parameters after Different Laser Vision Correction Procedures

Mohamed Hosny, Wessam Salem, Mohamed Anis, Riad Shalash, Mohamed T El-Naggar

Keywords : Accelerated, Acute hydrops, Allergic conjunctivitis

Citation Information : Hosny M, Salem W, Anis M, Shalash R, El-Naggar MT. Corneal ECC Biomechanics Parameters after Different Laser Vision Correction Procedures. Int J Kerat Ect Cor Dis 2024; 11 (1):7-12.

DOI: 10.5005/jp-journals-10025-1201

License: CC BY-NC 4.0

Published Online: 13-11-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: Evaluation of the changes in deformation amplitude (DA) ratio, integrated radius (IR), stress–strain index (SSI), and stiffness parameter at first applanation (SP-A1) obtained by the corneal visualization Scheimpflug technology (Corvis ST) and this is before and after different laser vision correction (LVC) procedures. Methods: An interventional study that is prospective, randomized, and comparative. Individuals having a maximum astigmatism of −3.00 D and a maximum [(mean refractive spherical equivalent (MRSE)] of −7.00 D. Using the Corvis ST, measurements were made of the DA ratio, IR, SSI, and SPA1 prior to and following three distinct LVC procedures: Photorefractive keratectomy (PRK; group I), laser assisted in situ keratomileusis (LASIK; group II), and Femto-LASIK (Femto-laser assisted in situ keratomileusis; group III). Results: Comparison between pre- and posttreatment showed significant increase in the DA ratio and IR with no significant change in SSI in group I. While in group II and III showed significant increase in DA ratio, IR and significant decrease in SSI. The SP-A1 change was significantly decreased in all three groups. Conclusion: The response of the corneal biomechanical to the three surgical procedures varied differently and the significant change was in the IR and SP-A1, where the SSI and DA ratio was nonsignificant. The results of LASIK and PRK showed the highest and lowest reductions in total corneal stiffness, respectively, while Femto-LASIK stayed in between.


PDF Share
  1. Schweitzer C, Roberts CJ, Mahmoud AM, et al. Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol Vis Sci 2010;51(5):2403–2410. DOI: 10.1167/iovs.09- 3689.
  2. Moshirfar M, Edmonds JN, Behunin NL, et al. Corneal biomechanics in iatrogenic ectasia and keratoconus: A review of the literature. Oman J Ophthalmol 2013;6(1):12–17. DOI: 10.4103/0974-620X.111895.
  3. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005;31(1):156–162. DOI: 10.1016/j.jcrs.2004.10.044.
  4. Kara N, Altinkaynak H, Baz O, et al. Biomechanical evaluation of cornea in topographically normal relatives of patients with keratoconus. Cornea 2013;32(3):262–266. DOI: 10.1097/ICO.0b013e3182490924.
  5. Narayanaswamy A, Chung RS, Wu R-Y, et al. Determinants of corneal biomechanical properties in an adult Chinese population. Ophthalmology 2011;118(7):1253–1259.
  6. Pepose JS, Feigenbaum SK, Qazi MA, et al. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am J Ophthalmol 2007;143(1):39–47. DOI: 10.1016/j.ajo.2006.09.036.
  7. Dixon PC, Loh JJ, Michaud–Paquette Y, et al. biomechZoo: An open-source toolbox for the processing, analysis, and visualization of biomechanical movement data. Comput Methods Programs Biomed 2017:140:1–10. DOI: 10.1016/j.cmpb.2016.11.007.
  8. Rio–Cristobal A, Martin R. Corneal assessment technologies: Current status. Surv Ophthalmol 2014;59(6):599–614. DOI: 10.1016/j.survophthal.2014.05.001.
  9. Vinciguerra R, Romano V, Arbabi EM, et al. In vivo early corneal biomechanical changes after corneal cross-linking in patients with progressive keratoconus. J Refract Surg 2017;33(12):840–846. DOI: 10.3928/1081597X-20170922-02.
  10. Eliasy A, Chen K-J, Vinciguerra R, et al. Determination of corneal biomechanical behavior in vivo for healthy eyes using CorVis ST tonometry: Stress–strain index. Front Bioeng Biotechnol 2019;7:105. DOI: 10.3389/fbioe.2019.00105.
  11. Sedaghat MR, Momeni–Moghaddam H, Ambrósio R Jr, et al. Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus. Cornea 2018;37(8):1025–1034. DOI: 10.1097/ICO.0000000000001639.
  12. Ambrósio R Jr, Dawson DG, Salomão M, et al. Biomechanics in keratoconus. In: Barbara A, editor. Textbook of Keratoconus: New Insights, 1st edition. New Delhi: Jaypee Brothers Medical Publishers; 2012, pp. 29–32.
  13. Scarcelli G, Besner S, Pineda R, et al. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci 2014;55(7):4490–4495. DOI: 10.1167/iovs.14-14450.
  14. Xin Y, Lopes BT, Wang J, et al. Biomechanical effects of tPRK, FS-LASIK, and SMILE on the cornea. Front Bioeng Biotechnol 2022:10:834270. DOI: 10.3389/fbioe.2022.834270.
  15. Lee H, Roberts CJ, Ambrósio R Jr, et al. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser–assisted laser in situ keratomileusis. J Cataract Refract Surg 2017;43(12):1495–1503. DOI: 10.1016/j.jcrs.2017.08.019.
  16. Cao K, Liu L, Yu T, et al. Changes in corneal biomechanics during small-incision lenticule extraction (SMILE) and femtosecond-assisted laser in situ keratomileusis (FS-LASIK). Lasers Med Sci 2020;35(3):599–609. DOI: 10.1007/s10103-019-02854-w.
  17. Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg 2013;29(7):454–460. DOI: 10.3928/1081597X-20130617-03.
  18. Wang D, Liu M, Chen Y, et al. Differences in the corneal biomechanical changes after SMILE and LASIK. J Refract Surg 2014;30(10):702–707. DOI: 10.3928/1081597X-20140903-09.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.