International Journal of Keratoconus and Ectatic Corneal Diseases

Register      Login

VOLUME 10 , ISSUE 1--2 ( January-December, 2023 ) > List of Articles

Original Article

Transepithelial (Epi-on) Corneal Collagen Cross-linking with Supplemental Oxygen as a Treatment for Patients with Progressive Keratoconus in Oman: 1-year Results

Rashid Al Saidi

Keywords : Corneal biomechanics, Corneal collagen cross-linking, Epi-on corneal collagen cross-linking, Keratoconus, Supplemental oxygen, Transepithelial, Visual acuity

Citation Information : Al Saidi R. Transepithelial (Epi-on) Corneal Collagen Cross-linking with Supplemental Oxygen as a Treatment for Patients with Progressive Keratoconus in Oman: 1-year Results. Int J Kerat Ect Cor Dis 2023; 10 (1--2):1-7.

DOI: 10.5005/jp-journals-10025-1197

License: CC BY-NC 4.0

Published Online: 23-04-2024

Copyright Statement:  Copyright © 2023; The Author(s).


Objectives: This prospective study aimed to assess the 1-year outcomes of transepithelial [epithelium-on (Epi-on)] corneal collagen cross-linking (CXL) with supplemental oxygen in patients with progressive keratoconus (KC) in Oman. The study sought to assess efficacy, and effectivity associated with this modified CXL technique. Methods: A total of 50 eyes of 35 patients with progressive KC underwent Epi-on CXL with supplemental oxygen. Clinical evaluations were performed at various time intervals over 1 year, assessing parameters including uncorrected visual acuity (UCVA), best-corrected visual acuity (BCVA), corneal thickness, and keratometry. The demarcation line depth was also measured. Results: The results revealed non-significant improvements in UCVA, modest enhancements in BCVA, and corneal thickness stabilization. Notably, keratometry parameters showed initial increases followed by reductions, with a significant decrease in K-mean. The demarcation line reached an average depth of 333.18 microns, signifying deep cross-linking equivalent to conventional CXL. Conclusion: Transepithelial cross-Linking with supplemental oxygen shows promise in halting the progression of KC. The approach, which avoids epithelial removal, proves effective in stabilizing corneal shape and improving visual acuity. Particularly beneficial for younger patients, this modified CXL technique offers a less invasive alternative to conventional methods, thereby enhancing the management of progressive KC. While further research is needed for validation, current evidence positions transepithelial CXL as a valuable advancement with the potential to significantly impact the treatment landscape for KC.

  1. Salman A, Mazzotta C, Kailani O, et al. Diagnostic accuracy of corneal and epithelial thickness map parameters to detect keratoconus and suspect keratoconus. J Ophthalmol 2023;2023:6677932. DOI: 10.1155/2023/6677932.
  2. Piyacomn Y, Kasetsuwan N, Puangsricharern V, et al. Keratoconus in Thai population: A cross-sectional hospital-based study. Asian Biomed (Res Rev News). 2023;16(6):316–321. DOI: 10.1515/abm-2022-0035.
  3. Gokhale NS. Epidemiology of keratoconus. Indian J Ophthalmol 2013;61(8):382–383. DOI: 10.4103/0301-4738.116054.
  4. Al Suhaibani AH, Al-Rajhi AA, Al-Motowa S, et al. Inverse relationship between age and severity and sequelae of acute corneal hydrops associated with keratoconus. Br J Ophthalmol 2007;91(7):984–985. DOI: 10.1136/bjo.2005.085878.
  5. Chiraples AC, Stanca H, Mărgărit D, et al. Impact on quality of life of keratoconus patients treated with accelerated “epi-on” corneal collagen crosslinking technique: Results from the NEI VFQ-25 Questionnaire in a Romanian population. Rom J Ophthalmol 2023;67(3):298–304. DOI: 10.22336/rjo.2023.48.
  6. Preethi B, Kumar KK, Babu GS, et al. Outcomes of accelerated collagen cross linking in progressive paediatric keratoconus. Indian J Ophthalmol 2023;71(5):1889–1893. DOI: 10.4103/ijo.IJO_1469_22.
  7. Tharini B, Sahebjada S, Borrone MA, et al. Keratoconus in pre-teen children: Demographics and clinical profile. Indian J Ophthalmol 2022;70(10):3508–3513. DOI: 10.4103/ijo.IJO_2579_21.
  8. Al-Mahrouqi HH, Al-Shamli N, Mohan NR, et al. Clinical profile of Omani keratoconus patients: An experience from a tertiary referral centre in Muscat. Oman J Ophthalmol 2018;11(3):259–264. DOI: 10.4103/ojo.OJO_203_2017.
  9. Sarma P, Kaur H, Hafezi F, et al. Short- and long-term safety and efficacy of corneal collagen cross-linking in progressive keratoconus: A systematic review and meta-analysis of randomized controlled trials. Taiwan J Ophthalmol 2022;13(2):191–202. DOI: 10.4103/2211-5056.361974.
  10. Deshmukh R, Ong ZZ, Rampat R, et al. Management of keratoconus: An updated review. Front Med (Lausanne) 2023;10:1212314. DOI: 10.3389/fmed.2023.1212314.
  11. Raiskup F, Theuring A, Pillunat LE, et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: Ten-year results. J Cataract Refract Surg 2015;41(1): 41–46. DOI: 10.1016/j.jcrs.2014.09.033.
  12. Qin D, Han Y, Wang L, et al. Recent advances in medicinal compounds related to corneal crosslinking. Front Pharmacol 2023;14:1232591. DOI: 10.3389/fphar.2023.1232591.
  13. Henriquez MA, Perez L, Hernandez–Sahagun G, et al. Long term corneal flattening after corneal crosslinking in patients with progressive keratoconus. Clin Ophthalmol 2023;17:1865–1875. DOI: 10.2147/OPTH.S409009.
  14. Netto EAT, Al-Otaibi WM, Hafezi NL, et al. Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br J Ophthalmol 2018;102(10):1436–1441. DOI: 10.1136/bjophthalmol-2017-311391.
  15. Seiler TG, Komninou MA, Nambiar MH, et al. Oxygen kinetics during corneal Cross-linking with and without supplementary oxygen. Am J Ophthalmol 2021;223:368–376. DOI: 10.1016/j.ajo.2020.11.001.
  16. Nieuwsma A, Vander Zee BL, Berdahl JP, et al. Evaluating the safety and efficacy of epi-off corneal cross-linking in patients with thin corneas due to keratectasia. Ther Adv Ophthalmol 2023;15:25158414231197064. DOI: 10.1177/25158414231197064.
  17. Li Y, Lu Y, Du K, et al. Comparison of efficacy and safety between standard, accelerated epithelium-off and transepithelial corneal collagen crosslinking in pediatric keratoconus: A meta-analysis. Front Med (Lausanne) 2022;9:787167. DOI: 10.3389/fmed.2022.787167.
  18. Wang J, Wang L, Li Z, et al. Corneal biomechanical evaluation after conventional corneal crosslinking with oxygen enrichment. Eye Contact Lens 2020;46(5):306–309. DOI: 10.1097/ICL.0000000000000645.
  19. Hill J, Liu C, Deardorff P, et al. Optimization of oxygen dynamics, UV-A delivery, and drug formulation for accelerated Epi-on corneal crosslinking. Curr Eye Res 2020;45(4):450–458. DOI: 10.1080/02713683.2019.1669663.
  20. Galvis V, Tello A, Ortiz AI, et al. Patient selection for corneal collagen cross-linking: An updated review. Clin Ophthalmol 2017;11:657–668. DOI: 10.2147/OPTH.S101386.
  21. Omar HA, El-Agha MH, Hassaballah MA, et al. Safety and efficacy of epithelial island crosslinking in keratoconus with thinnest pachymetry less than 400µ. Middle East Afr J Ophthalmol 2021;28(1):11–17. DOI: 10.4103/meajo.MEAJO_186_20.
  22. Brar S, Ganesh S, Reddy SS, et al. A prospective, comparative, clinical study to evaluate the safety and efficacy of two different 0.1% riboflavin solutions used in collagen crosslinking treatment for patients with keratoconus. Clin Ophthalmol 2021;15:2607–2617. DOI: 10.2147/OPTH.S313647.
  23. Hashemi H, Heydarian S, Yekta A, et al. High prevalence and familial aggregation of keratoconus in an Iranian rural population: A population-based study. Ophthalmic Physiol Opt 2018;38(4): 447–455. DOI: 10.1111/opo.12448.
  24. Gomes JA, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic diseases. Cornea 2015;34(4):359–369. DOI: 10.1097/ICO.0000000000000408.
  25. Gordon–Shaag A, Millodot M, Shneor E, et al. The genetic and environmental factors for keratoconus. Biomed Res Int 2015;2015:795738. DOI: 10.1155/2015/795738.
  26. Ng JM, Lin KK, Lee JS, et al. Incidence and prevalence of keratoconus in Taiwan during 2000–2018 and their association with the use of corneal topography and tomography. Eye (Lond) 2024;38(4):745–751. DOI: 10.1038/s41433-023-02767-7.
  27. Karolak JA, Gajecka M. Genomic strategies to understand causes of keratoconus. Mol Genet Genomics 2017;292(2):251–269. DOI: 10.1007/s00438-016-1283-z.
  28. Hashemi H, Fotouhi A, Miraftab M, et al. Short-term comparison of accelerated and standard methods of corneal collagen crosslinking. J Cataract Refract Surg 2015;41(3):533–540. DOI: 10.1016/j.jcrs.2014.07.030.
  29. O'Brart DP, Patel P, Lascaratos G, et al. Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: Seven-year follow-up. Am J Ophthalmol 2015;160(6):1154–1163. DOI: 10.1016/j.ajo.2015.08.023.
  30. Kanellopoulos AJ, Asimellis G. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements. Clin Ophthalmol 2013;7:2239–2247. DOI: 10.2147/OPTH.S53718.
  31. Wongchaisuwat N, Metheetrairat A, Chonpimai P, et al. Comparison of central corneal thickness measurements in corneal edema using ultrasound pachymetry, Visante anterior-segment optical coherence tomography, cirrus optical coherence tomography, and Pentacam Scheimpflug camera tomography. Clin Ophthalmol 2018;12: 1865–1873. DOI: 10.2147/OPTH.S172159.
  32. Kuerten D, Plange N, Koch EC, et al. Central corneal thickness determination in corneal edema using ultrasound pachymetry, a Scheimpflug camera, and anterior segment OCT. Graefes Arch Clin Exp Ophthalmol 2015;253(7):1105–1109. DOI: 10.1007/s00417-015-2998-y.
  33. Wittig–Silva C, Chan E, Islam FM, et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: Three-year results. Ophthalmology 2014;121(4):812–821. DOI: 10.1016/j.ophtha.2013.10.028.
  34. Caporossi A, Mazzotta C, Baiocchi S, et al. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: The Siena eye cross study. Am J Ophthalmol 2010;149(4): 585–593. DOI: 10.1016/j.ajo.2009.10.021.
  35. Godefrooij DA, Boom K, Soeters N, et al. Predictors for treatment outcomes after corneal crosslinking for keratoconus: A validation study. Int Ophthalmol 2017;37(2):341–348. DOI: 10.1007/s10792-016-0262-z.
  36. Hashemi H, Seyedian MA, Miraftab M, et al. Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: Long-term results. Ophthalmology 2013;120(8):1515–1520. DOI: 10.1016/j.ophtha.2013.01.012.
  37. Lin ZR, Wu HP, Luo SR, et al. Accelerated transepithelial corneal collagen cross-linking for progressive keratoconus with a thin cornea: One-year results. Zhonghua Yan Ke Za Zhi 2017;53(9):694–700. DOI: 10.3760/cma.j.issn.0412-4081.2017.09.011.
  38. Mazzotta C, Moramarco A, Traversi C, et al. Accelerated corneal collagen cross-linking using topography-guided UV-A energy emission: Preliminary clinical and morphological outcomes. J Ophthalmol 2016;2016:2031031. DOI: 10.1155/2016/2031031.
  39. Kymionis GD, Diakonis VF, Coskunseven E, et al. Customized pachymetric guided epithelial debridement for corneal collagen cross linking. BMC Ophthalmol 2009;9:10. DOI: 10.1186/1471-241 5-9-10.
  40. Agarwal R, Jain P, Arora R. Complications of corneal collagen cross-linking. Indian J Ophthalmol 2022;70(5):1466–1474. DOI: 10.4103/ijo.IJO_1595_21.
  41. Shalchi Z, Wang X, Nanavaty MA. Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye (Lond) 2015;29(1):15–29. DOI: 10.1038/eye.2014.230.
  42. Liu Y, Shen D, Wang HY, et al. Development and validation to predict visual acuity and keratometry two years after corneal crosslinking with progressive keratoconus by machine learning. Front Med (Lausanne) 2023;10:1146529. DOI: 10.3389/fmed.2023.1146529.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.