International Journal of Keratoconus and Ectatic Corneal Diseases

Register      Login

VOLUME 9 , ISSUE 1 ( January-June, 2020 ) > List of Articles

Original Article

Long-term Analysis of Epi-ON Corneal Collagen Cross-linking Outcomes in Corneal Ectasia

Rafael Melián, Vicente Rodriguez, Humberto Carreras, David P Piñero Llorens, Jesús M Gonzalez-Martín, Francisco Galván

Keywords : Corneal collagen cross-linking, Corneal ectasia, Corneal tomography, Keratoconus, Pellucid marginal degeneration, Post-LASIK ectasia

Citation Information : Melián R, Rodriguez V, Carreras H, Llorens DP, Gonzalez-Martín JM, Galván F. Long-term Analysis of Epi-ON Corneal Collagen Cross-linking Outcomes in Corneal Ectasia. Int J Kerat Ect Cor Dis 2020; 9 (1):1-6.

DOI: 10.5005/jp-journals-10025-1187

License: CC BY-NC 4.0

Published Online: 13-04-2022

Copyright Statement:  Copyright © 2020; The Author(s).


Aim and objective: To evaluate the 3-year follow-up clinical outcomes obtained in corneal ectasia using Epi-ON corneal collagen cross-linking (CXL). Materials and methods: This study is a retrospective study enrolling 46 eyes from 32 patients with progressive corneal ectasia and treated with Epi-ON CXL in the period from September 2012 to April 2016. Two groups were differentiated according to the type of corneal ectasia: ectasia post-LASIK group (EPL, 12 eyes) and primary ectasia group (34 eyes). Two different platforms were used for the surgical protocol: VEGA CBM X LINKER platform (CSO, Firenze, Italy) and KXL (Avedro, Waltham, Massachusetts, USA). Visual, refractive, and corneal tomographic outcomes were evaluated during a 3-year follow-up. Results: A statistically significant improvement in the logMAR corrected distance visual acuity (CDVA) was observed in the whole sample (p <0.001) during the follow-up, with half of the sample improving one or more lines of CDVA. Likewise, only significant changes were detected in steepest keratometry (p <0.001), corneal astigmatism (p = 0.012), and index of height asymmetry (p = 0.021), with a trend to increase. Regarding the comparison between groups, more significant improvement in CDVA was found in the EPL group compared to the primary ectasia group (−0.07 ± 0.09 vs −0.15 ± 0.14, p = 0.028). Likewise, a significant trend to more corneal thinning was observed in primary ectasia group (p = 0.034). Conclusion: Epi-ON CXL is efficacious for stabilizing the progression of primary and iatrogenic ectasias for most cases, with significant improvement of visual acuity associated.

  1. Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998;42(4):297–319. DOI: 10.1016/s0039-6257(97)00119-7.
  2. Galvis V, Sherwin T, Tello A, et al. Keratoconus: an inflammatory disorder? Eye (Lond) 2015;29(7):843–859. DOI: 10.1038/eye.2015.63.
  3. Balasubramanian SA, Pye D, Willcox M. Effects of eye rubbing on the levels of protease, protease activity and cytokines in thears: relevance in keratoconus. Clin Exp Optom 2013;96(2):214–218. DOI: 10.1111/cxo.12038.
  4. Balasubramanian SA, Pye DC, Willcox MD. Are proteinases the reason for keratoconus? Curr Eye Res 2010;35(3):185–191. DOI: 10.3109/02713680903477824.
  5. Lema I, Duran JA. Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 2005;112(4):654–659. DOI: 10.1016/j.ophtha.2004.11.050.
  6. Hashemi H, Khabazkhoob M, Yazdani N, et al. The prevalence of keratoconus in a young population in Mashhad, Iran. Ophthalmic Physiol Opt 2014;34(5):519–527. DOI: 10.1111/opo.12147.
  7. Hashemi H, Beiranvand A, Khabazkhoob M, et al. Prevalence of keratoconus in a population-based study in Sharoud. Cornea 2013;32(11):1441–1444. DOI: 10.1097/ICO.0b013e3182a0d014.
  8. Hashemi H, Khabazkhoob M, Fotouhi A. Topographic keratoconus is not rare in an Iranian population: the Tehran Eye Study. Ophthalmic Epidemiol 2013;20(6):385–391. DOI: 10.3109/09286586.2013.848458.
  9. Shneor E, Millodot M, Blumberg S, et al. Characteristics of 244 patients with keratoconus seen in an optometric contact lens practice. Clin Exp Optom 2013;96(2):219–224. DOI: 10.1111/cxo.12005.
  10. Martínez-Abad A, Piñero DP. New perspectives on the detection and progression of keratoconus. J Cataract Refract Surg 2017;43(9): 1213–1227. DOI: 10.1016/j.jcrs.2017.07.021.
  11. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res 1980;31(4):435–441. DOI: 10.1016/s0014-4835(80)80027-3.
  12. Jeng BH, Farid M, Patel SV, et al. Corneal cross-linking for keratoconus: a look at the data, the food and drug administration, and the future. Ophthalmology 2016;123(11):2270–2272. DOI: 10.1016/j.ophtha.2016.08.006.
  13. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res 1998;66(1):97–103. DOI: 10.1006/exer.1997.0410.
  14. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003;135(5):620–627. DOI: 10.1016/s0002-9394(02) 02220-1.
  15. Hamida Abdelkader SM, Fernández J, Rodríguez-Vallejo M, et al. Comparison of different methods of corneal collagen crosslinking: a systematic review. Semin Ophthalmol 2021;36(3):67–74. DOI: 10.1080/08820538.2021.1890784.
  16. Martínez-Abad A, Piñero DP. Pellucid marginal degeneration: detection, discrimination from other corneal ectatic disorders and progression. Cont Lens Anterior Eye 2019;42(4):341–349. DOI: 10.1016/j.clae.2018.11.010.
  17. Piñero DP, Alió JL, Barraquer RI, et al. Clinical characterization of corneal ectasia after myopic laser in situ keratomileusis based on anterior corneal aberrations and internal astigmatism. J Cataract Refract Surg 2011;37(7):1291–1299. DOI: 10.1016/j.jcrs.2010.12.063.
  18. Baiocchi S, Mazzotta C, Cerretani D, et al. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg 2009;35(5):893-899. DOI: 10.1016/j.jcrs.2009.01.009.
  19. Henriquez MA, Hernandez-Sahagun G, Camargo J, et al. Accelerated epi-on versus standard epi-off corneal collagen cross-linking for progressive keratoconus in pediatric patients: five years of follow-up. Cornea 2020;39(12):1493–1498. DOI: 10.1097/ICO.0000000000002463.
  20. Eraslan M, Toker E, Cerman E, et al. Efficacy of epithelium-off and epithelium-on corneal collagen cross-linking in pediatric keratoconus. Eye Contact Lens 2017;43(3):155–161. DOI: 10.1097/ICL.0000000000000255.
  21. Wollensak G, Aurich H, Wirbelauer C, et al. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg 2010;36(1):114–120. DOI: 10.1016/j.jcrs.2009.07.044.
  22. Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol 2009;87(1):48–51. DOI: 10.1111/j.1755-3768.2008.01190.x.
  23. Hill J, Liu C, Deardorff P, et al. Optimization of oxygen dynamics, UV-A delivery, and drug formulation for accelerated epi-on corneal crosslinking. Curr Eye Res 2020;45(4):450–458. DOI: 10.1080/02713683.2019.1669663.
  24. Faramarzi A, Hassanpour K, Rahmani B, et al. Systemic supplemental oxygen therapy during accelerated corneal cross-linking for progressive keratoconus; a randomized clinical trial. J Cataract Refract Surg 2021;47(6):773–779. DOI: 10.1097/j.jcrs.0000000000000513.
  25. Mazzotta C, Raiskup F, Hafezi F, et al. Long term results of accelerated 9 mW corneal crosslinking for early progressive keratoconus: the Siena Eye-Cross Study 2. Eye Vis (Lond) 2021;8(1):16. DOI: 10.1186/s40662-021-00240-8.
  26. Zhang X, Sun L, Tian M, et al. Accelerated (45 mW/cm2) transepithelial corneal cross-linking for progressive keratoconus patients: long-term topographical and clinical outcomes. Front Med (Lausanne) 2020;7:283. DOI: 10.3389/fmed.2020.00283.
  27. Marafon SB, Kwitko S, Marinho DR. Long-term results of accelerated and conventional corneal cross-linking. Int Ophthalmol 2020;40(10):2751–2761. DOI: 10.1007/s10792-020-01462-w.
  28. Nicula CA, Nicula D, Rednik AM, et al. Comparative results of “Epi-Off” conventional versus “Epi-Off” accelerated cross-linking procedure at 5-year follow-up. J Ophthalmol 2020;2020:4745101. DOI: 10.1155/2020/4745101.
  29. Ting DSJ, Rana-Rahman R, Chen Y, et al. Effectiveness and safety of accelerated (9 mW/cm2) corneal collagen cross-linking for progressive keratoconus: a 24-month follow-up. Eye (Lond) 2019;33(2):812–818. DOI: 10.1038/s41433-018-0323-9.
  30. Vounotrypidis E, Athanasiou A, Kortüm K, et al. Long-term database analysis of conventional and accelerated crosslinked keratoconic mid-European eyes. Graefes Arch Clin Exp Ophthalmol 2018;256(6): 1165–1172. DOI: 10.1007/s00417-018-3955-3.
  31. Cifariello F, Minicucci M, Di Renzo F, et al. Epi-Off versus Epi-On corneal collagen cross-linking in keratoconus patients: a comparative study through 2-year follow-up. J Ophthalmol 2018;2018:4947983. DOI: 10.1155/2018/4947983.
  32. Ağca A, Tülü B, Yaşa D, et al. Accelerated corneal crosslinking in children with keratoconus: 5-year results and comparison of 2 protocols. J Cataract Refract Surg 2020;46(4):517–523. DOI: 10.1097/j.jcrs.0000000000000101.
  33. Kirgiz A, Eliacik M, Yildirim Y. Different accelerated corneal collagen cross-linking treatment modalities in progressive keratoconus. Eye Vis (Lond) 2019;6:16. DOI: 10.1186/s40662-019-0141-6.
  34. Amer I, Elaskary A, Mostafa A, et al. Long-term visual, refractive and topographic outcomes of “Epi-off” corneal collagen cross-linking in pediatric keratoconus: standard versus accelerated protocol. Clin Ophthalmol 2020;14:3747–3754. DOI: 10.2147/OPTH.S275797.
  35. Beloshevski B, Shashar S, Mimouni M, et al. Comparison between three protocols of corneal collagen crosslinking in adults with progressive keratoconus: standard versus accelerated CXL for keratoconus. Eur J Ophthalmol 2020;1120672120972632. DOI: 10.1177/1120672120972632.
  36. Turhan SA, Yargi B, Toker E. Efficacy of conventional versus accelerated corneal cross-linking in pediatric keratoconus: two-year outcomes. J Refract Surg 2020;36(4):265–269. DOI: 10.3928/1081597X-20200302-01.
  37. Artola A, Piñero DP, Ruiz-Fortes P, et al. Clinical outcomes at one year following keratoconus treatment with accelerated transepithelial cross-linking. Int J Ophthalmol 2017;10(4):652–655. DOI: 10.18240/ijo.2017.04.24.
  38. Piñero DP, Artola A, Ruiz-Fortes P, et al. Clinical outcomes at 1 year following corneal ectasia treatment with accelerated transepithelial cross-linking. Int J Kerat Ect Cor Dis 2016;5(3):93–98. DOI: 10.5005/jp-journals-10025-1128.
  39. Yam JCS, Cheng ACK. Prognostic factors for visual outcomes after crosslinking for keratoconus and post-LASIK ectasia. Eur J Ophthalmol 2013;23(6):799–806. DOI: 10.5301/ejo.5000321.
  40. Sahebjada S, Al-Mahrouqi HH, Moshegov S, et al. Eye rubbing in the aetiology of keratoconus: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 2021;259(8):2057–2067. DOI: 10.1007/s00417-021-05081-8.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.