International Journal of Keratoconus and Ectatic Corneal Diseases

Register      Login

VOLUME 8 , ISSUE 1 ( January-June, 2019 ) > List of Articles

RESEARCH ARTICLE

Analysis of the Change Induced by Riboflavin and Ultraviolet Light on Corneal Collagen by Infrared Spectrometry

Vinay Kansal, Jayd Lukenchuk, Mary-Magdalene U Dodd, Mark Hackett, Vikas Sharma

Keywords : Corneal collagen, Corneal collagen cross-linking, Keratoconus, Riboflavin, Ultraviolet light

Citation Information : Kansal V, Lukenchuk J, Dodd MU, Hackett M, Sharma V. Analysis of the Change Induced by Riboflavin and Ultraviolet Light on Corneal Collagen by Infrared Spectrometry. Int J Kerat Ect Cor Dis 2019; 8 (1):17-22.

DOI: 10.5005/jp-journals-10025-1174

License: CC BY-NC 4.0

Published Online: 01-06-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: Corneal collagen cross-linking (CCL) is a procedure that exposes the cornea to ultraviolet light and/or riboflavin to halt the progression of corneal ectatic disease. Currently, most investigations using Fourier-transform infrared spectroscopy (FTIR) of corneal changes following CCL focus on corneal ultrastructure, and not on changes at the molecular level. The aim of this study was to investigate the temporal and spatial separation of corneal collagen linkages that underlie the success of CCL. Materials and methods: Controlled experimental trial. Pairs of donor globes from five patients (n = 10) were divided into interventional and control groups. Interventional group corneas (n = 5) were exposed to riboflavin 0.1% and ultraviolet-A (UVA) light according to the modified Dresden protocol, harvested, cryo-microtomed, and placed on glass slides. Control group corneas (n = 5) underwent cryo-microtoming without CCL. Molecular changes were imaged using the synchrotron mid-infrared beamline at the Canadian Light Source. Results: Fourier-transform infrared spectroscopy imaging of total protein, integrated area under the amide I band from 1,700 to 1,600 cm1, FTIR imaging of collagen triple helix structures, second-derivative intensity as 1,666 cm1, and FTIR imaging of aggregated proteins, second-derivative intensity as 1,625 cm1 detected no difference in intramolecular cross-links between the interventional and control corneas. The secondary structure of collagen was neither significantly altered nor was its evidence of aggregation or denaturation within the cornea. Conclusion: Our data suggest that intramolecular cross-linking does not play a major role in CCL and that it is more likely to increase in intermolecular linkages that accounts for increased corneal strength. Clinical significance: An increase in intermolecular linkages likely accounts for the increased corneal strength observed following CCL. We hope that these results will guide future work to optimize techniques for CCL.


PDF Share
  1. Gordon-Shaag A, Millodot M, Shneor E, et al. The genetic and environmental factors for keratoconus. Biomed Res Int 2015;2015:795738. DOI: 10.1155/2015/795738.
  2. Mas Tur V, MacGregor C, Jayaswal R, et al. A review of keratoconus: diagnosis, pathophysiology, and genetics. Surv Ophthalmol 2017;62(6):770–783. DOI: 10.1016/j.survophthal.2017.06.009.
  3. Chang S-H, Mohammadvali A, Chen K-J, et al. The relationship between mechanical properties, ultrastructural changes, and intrafibrillar bond formation in corneal UVA/riboflavin cross-linking treatment for keratoconus. J Refract Surg 2018;34(4):264–272. DOI: 10.3928/1081597X-20180220-01.
  4. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res 1980;31(4):435–441. DOI: 10.1016/s0014-4835(80)80027-3.
  5. Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol 2006;17(4):356–360. DOI: 10.1097/01.icu.0000233954.86723.25.
  6. Spörl E, Huhle M, Kasper M, et al. Increased rigidity of the cornea caused by intrastromal cross-linking. Ophthalmologe 1997;94(12):902–906. DOI: 10.1007/s003470050219.
  7. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003;135(5):620–627. DOI: 10.1016/s0002-9394(02) 02220-1.
  8. Medeiros CS, Giacomin NT, Bueno RL, et al. Accelerated corneal collagen crosslinking: technique, efficacy, safety, and applications. J Cataract Refract Surg 2016;42(12):1826–1835. DOI: 10.1016/j.jcrs.2016.11.028.
  9. Kymionis GD, Kontadakis GA, Hashemi KK. Accelerated versus conventional corneal crosslinking for refractive instability: an update. Curr Opin Ophthalmol 2017;28(4):343–347. DOI: 10.1097/ICU.0000000000000375.
  10. Wollensak G, Sporl E, Mazzotta C, et al. Interlamellar cohesion after corneal crosslinking using riboflavin and ultraviolet A light. Br J Ophthalmol 2011;95(6):876–880. DOI: 10.1136/bjo.2010.190843.
  11. Raiskup F, Spoerl E. Corneal Crosslinking with Riboflavin and Ultraviolet A. I. Principles. Ocul Surf 2013;11(2):65–74. DOI: 10.1016/j.jtos.2013.01.002.
  12. Gaster RN, Caiado Canedo AL, Rabinowitz YS. Corneal collagen cross-linking for keratoconus and post-LASIK ectasia. Int Ophthalmol Clin 2013;53(1):79–90. DOI: 10.1097/IIO.0b013e3182773ab4.
  13. Kato Y, Uchida K, Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol 1994;59(3):343–349. DOI: 10.1111/j.1751-1097.1994.tb05045.x.
  14. Marcovich AL, Brandis A, Daphna O, et al. Stiffening of rabbit corneas by the bacteriochlorophyll derivative WST11 using near infrared light. Invest Opthalmol Vis Sci 2012;53(10):6378–6388. DOI: 10.1167/iovs.12-9913.
  15. Balasubramanian D, Kanwar R. Molecular pathology of dityrosine cross-links in proteins: structural and functional analysis of four proteins. In: Vallyathan V, Shi X, Castranova V, ed. Oxygen/Nitrogen Radicals: Cell Injury and Disease. Boston, MA: Springer US; 2002. pp. 27–38. DOI: 10.1007/978-1-4615-1087-1_4.
  16. Xia Y, Liu B, Fan Z, et al. Corneal collagen fibril changes after ultraviolet a/riboflavin corneal crosslinking. Cornea 2014;33(1):56–59. DOI: 10.1097/ICO.0000000000000017.
  17. Wollensak G, Wilsch M, Spoerl E, et al. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea 2004;23(5):503–507. DOI: 10.1097/01.ico.0000105827.85025.7f.
  18. Choi M, Kim J, Kim EK, et al. Comparison of the conventional Dresden protocol and accelerated protocol with higher ultraviolet intensity in corneal collagen cross-linking for keratoconus. Cornea 2017;36(5):523–529. DOI: 10.1097/ICO.0000000000001165.
  19. Netto MV, Mohan RR, Ambrósio R, et al. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 2005;24(5):509–522. DOI: 10.1097/01.ico.0000151544.23360.17.
  20. Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 2009;35(8):1358–1362. DOI: 10.1016/j.jcrs.2009.03.035.
  21. Wilson SE, Kim WJ. Keratocyte apoptosis: implications on corneal wound healing, tissue organization, and disease. Invest Ophthalmol Vis Sci 1998;39(2):220–226.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.