International Journal of Keratoconus and Ectatic Corneal Diseases

Register      Login

VOLUME 5 , ISSUE 1 ( January-April, 2016 ) > List of Articles

RESEARCH ARTICLE

Progression in Keratoconus

Paolo Vinciguerra, Raffaele Piscopo, Fabrizio Camesasca, Riccardo Vinciguerra

Citation Information : Vinciguerra P, Piscopo R, Camesasca F, Vinciguerra R. Progression in Keratoconus. Int J Kerat Ect Cor Dis 2016; 5 (1):21-31.

DOI: 10.5005/jp-journals-10025-1117

Published Online: 00-04-2016

Copyright Statement:  Copyright © 2016; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

How to cite this article

Vinciguerra P, Piscopo R, Camesasca F, Vinciguerra R. Progression in Keratoconus. Int J Kerat Ect Cor Dis 2016;5(1):21-31.


PDF Share
  1. Evaluation of keratometric, pachymetric, and elevation parameters of keratoconic corneas with pentacam. Cornea 2009 Oct;28(9):976-980.
  2. New clinical pathways for keratoconus. Eye (Lond) 2013 Mar;27(3):329-339.
  3. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol 2012;6:789-800.
  4. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eye. Ophthalmology 2012 Dec;119(12):2425-2433.
  5. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 2012 Jul;37(7):553-562.
  6. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013 Jan;90(1):e1-e8.
  7. Biomechanics in keratoconus. Barbara, A., editor. Textbook on keratoconus: new insights. New Delhi: Jaypee Brothers Medical Publishers; 2012. p. 29.
  8. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005;31(1):156-162.
  9. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg 2014;40(6):862-865.
  10. Airpulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol 2011;95(6):793-798.
  11. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology 2014;121(2):459-468.
  12. Improved keratoconus detection by ocular response analyzer testing after consideration of corneal thickness as a confounding factor. J Refract Surg 2012;28(3):202-208.
  13. Early biomechanical keratoconus pattern measured with an ocular response analyzer: curve analysis. J Cataract Refract Surg 2011;37(12):2144-2150.
  14. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol 2013 Mar/Apr;72(2):99-102.
  15. Effects of laser in situ keratomileusis (LASIK) on corneal biomechanical measurements with the Corvis ST tonometer. Clin Ophthalmol 2015;9:305-311.
  16. Corneal biomechanics: Corvis® ST parameters after LASIK. Ophthalmologe 2015 Sep;112(9):740-745.
  17. Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery. Cont Lens Anterior Eye 2014 Oct;37(5):337-341.
  18. Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefes Arch Clin Exp Ophthalmol 2014 Aug;252(8):1329-1335.
  19. Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg 2014;30(5):310-318.
  20. Changes in corneal deformation parameters after lenticule creation and extraction during small incision lenticule extraction (SMILE) procedure. PLoS One 2014 Aug 14;9(8):e103893.
  21. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci 2014 May 15;55(6):3651-3659.
  22. Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J Ophthalmol 2014;2014:147516.
  23. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg 2014 Nov;30(11):785-791.
  24. Variability of corneal deformation response in normal and keratoconic eyes. Optom Vis Sci 2015 Jul;92(7):e149-e153.
  25. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg 2014 Jun;30(6):408-414.
  26. Evaluation of corneal deformation analyzed with Scheimpflug based device in healthyeyesanddiseasedones. Biomed Res Int 2014;2014:748671.
  27. Corneal elevation topography: best fit sphere, elevation distance, asphericity, toricity, and clinical implications. Cornea 2011 May;30(5):508-515.
  28. Comparative analysis of anterior segment parameters in normal and keratoconus eyes generated by Scheimpflug tomography. J Ophthalmol 2015;2015:925414.
  29. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology 2008 Sep;115(9):1534-1539.
  30. Keratoconus: age of onset and natural history. Optom Vis Sci 1997 Mar;74(3):147-151.
  31. Two- year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol 2012 Sep;154(3):520-526.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.